The CHIANTI database has the following primary ASCII files for this ion:
contains the energy levels (in cm-1). It includes both experimental and theoretical values of the levels energies.
Theoretical energies: Fernandez-Menchero, L., Del Zanna, G. and Badnell, N.R. A&A, 2014, 572, A115 doi = {10.1051/0004-6361/201424849 Experimental energy levels (1 to 45): Shirai,T., Sugar,J., Musgrove,A., Wiese,W.L.,2000, J.Phys.Chem.Ref.Data, Monograph 8 Experimental energy levels (31,32): Eissner, W., Galavis, M.E., Mendoza, C., Zeippen, C.J., 1999, A&AS, 137, 165 Experimental energy levels (50,51,52): Reader, J., Sugar, J., 1975, J.Phys.Chem.Ref.Data, 4, 424 Experimental energy levels (76-117): Ralchenko Y., Jou, F.C., Kelleher, D.E., Kramida, A.E., Musgrove, A., Reader, J., Wiese, W.L., Olsen, K., 2005, NIST Atomic Spectra Database, Version 3.0 Produced as part of the 'CHIANTI' atomic data base collaboration by Giulio Del Zanna, May 2020 ----------------------------------------------------------------------- 2023 October Ken Dere Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2022). NIST Atomic Spectra Database (ver. 5.10), [Online]. Available: https://physics.nist.gov/asd [2023, October 9]. National Institute of Standards and Technology, Gaithersburg, MD. DOI: https://doi.org/10.18434/T4W30F updated levels 50, 51 level 81: inserted new NIST value level 39, 93: inserted new values base on Lepson, et al., 2023, ApJ, 946, 23 -1
contains wavelengths, gf and A values of the transitions. The wavelengths are based on the experimental energy levels and should be the best available. Wavelengths calculated from the theoretical energies are of an indeterminate accuracy and their values are presented as negative values of the calculated wavelength.
%filename: fe_15.wgfa gf-values, A-values and theoretical energies: Fernandez-Menchero, L., Del Zanna, G. and Badnell, N.R. A&A, 2014, 572, A115 doi = {10.1051/0004-6361/201424849 Only transition probabilities with a branching ratio greater than 10^(-5) have been retained. gf-values, A-values for the n=3 (lowest 26 levels): MCHF calculation by G. Tachiev and C. Froese Fischer, Method: MCHF (ab initio), 2002 https://nlte.nist.gov/MCHF/periodic.html Experimental energy levels (1 to 45): Shirai,T., Sugar,J., Musgrove,A., Wiese,W.L.,2000, J.Phys.Chem.Ref.Data, Monograph 8 Experimental energy levels (31,32): Eissner, W., Galavis, M.E., Mendoza, C., Zeippen, C.J., 1999, A&AS, 137, 165 Experimental energy levels (50,51,52): Reader, J., Sugar, J., 1975, J.Phys.Chem.Ref.Data, 4, 424 Experimental energy levels (76-117): Ralchenko Y., Jou, F.C., Kelleher, D.E., Kramida, A.E., Musgrove, A., Reader, J., Wiese, W.L., Olsen, K., 2005, NIST Atomic Spectra Database, Version 3.0 Produced as part of the 'CHIANTI' atomic data base collaboration by Giulio Del Zanna, May 2020 ---------------------------------------------------------- wavelengths determined from energy level file = fe_15.elvlc wgfaName = fe_15.wgfa minimum branching ratio = 0.00010 filename = fe_15.wgfa_rev produced as a part of the 'CHIANTI' atomic database for astrophysical spectroscopy K. Dere (GMU) - 2023 October 11
contains the effective electron collision strengths scaled according to the rules formulated by Burgess and Tully (1992).
Giulio Del Zanna, May 2020 Produced as part of the 'CHIANTI' atomic data base collaboration by Note: only bound levels have been retained. doi = {10.1051/0004-6361/201424849 A&A, 2014, 572, A115 Fernandez-Menchero, L., Del Zanna, G. and Badnell, N.R. oscillator strengths and effective collision strengths:
contains the spline fits to the scaled proton collision strengths.
%filename: fe_15.psplups %rates: Landman, D.A., Brown, T., 1979, ApJ 232, 636 %energies: Observed energies from CHIANTI .elvlc file. %produced as part of the Arcetri/Cambridge/NRL 'CHIANTI' atomic data base collaboration % % Peter Young 18-May-2001
Page created by Giulio Del Zanna on Tue Dec 3 13:24:03 2024