The CHIANTI database has the following primary ASCII files for this ion:
contains the energy levels (in cm-1). It includes both experimental and theoretical values of the levels energies.
%filename: fe_20.elvlc %Observed energy levels (2-5): Kucera et al., 2000, ApJ, 538, 424 %Observed energy levels (6-15): Edlen, B., 1984,P ysicaS cripta, 30, 135 %Observed energy levels (n=3): identifications from the X-ray line list by Landi &P hillips 2005, ApJS, 160, 286 %Observed energy levels (n=4,5):Shirai,T., Sugar,J., Musgrove,A., Wiese,W.L., 2000, J.Phys.Chem.Ref.Data, Monograph 8 %Theoretical energy levels (levels up to n=4): Witthoeft, M.C.,D el Zanna,G ., & Badnell, N.R. 2007, A&A, 466, 763 %Theoretical energy levels (n=5 levels): Landi &Gu, 2006, ApJ, 640, 1171 % produced as part of the Arcetri/Cambridge/NRL 'CHIANTI' atomic data base collaboration % % Giulio Del Zanna and Enrico Landi - Oct 2008 % revised January 2018 Theoretical energy levels above IP: Autostructure calculation A Breit-Pauli distorted wave implementation for AUTOSTRUCTURE Badnell, N.R., 2011, Computer Physics Communications, 182, 1528 ADSref: http://adsabs.harvard.edu/abs/2011CoPhC.182.1528B Autostructure calculation optimized with 'SHFTIC' file using energy corrections from the following sources: observed energy level 360 Rudolph, J. K.; Bernitt, S.; Epp, S. W.; Steinbrugge, R.; Beilmann, C.; Brown, G. V.; Eberle, S.; Graf, A.; Harman, Z.; Hell, N.; Leutenegger, M.; Mueller, A.; Schlage, K.; Wille, H.-C.; Yavas, H.; Ullrich, J.; Crespo Lopez-Urrutia, J. R. X-Ray Resonant Photoexcitation: Linewidths and Energies of K-alpha Transitions in Highly Charged Fe Ions Physical Review Letters, vol. 111, Issue 10, id. 103002 DOI: 10.1103/PhysRevLett.111.103002 adsRef: http://adsabs.harvard.edu/abs/2013PhRvL.111j3002R other observed eneryg levels above IP Observed energy levels: Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2012). NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd [2012, September 14]. National Institute of Standards and Technology, Gaithersburg, MD. produced as a part of the 'CHIANTI' atomic database for astrophysical spectroscopy K. Dere (GMU) - 2018 January 31 %comment: Fixed text problems in comments. No change to data. Peter Young, 25-Jul-2019
contains wavelengths, gf and A values of the transitions. The wavelengths are based on the experimental energy levels and should be the best available. Wavelengths calculated from the theoretical energies are of an indeterminate accuracy and their values are presented as negative values of the calculated wavelength.
%filename: fe_20.wgfa %Observed energy levels (2-5): Kucera et al., 2000, ApJ, 538, 424 %Observed energy levels (6-15): Edlen, B., 1984, Pysica Scripta, 30, 135 %Observed energy levels (n=3): identifications from the X-ray line list by Landi & Phillips 2005, ApJS, 160, 286 %Observed energy levels (n=4,5): Shirai,T., Sugar,J., Musgrove,A., Wiese,W.L., 2000, J.Phys.Chem.Ref.Data, Monograph 8 %Theoretical energy levels (levels up to n=4): Witthoeft, M.C., Del Zanna, G., & Badnell, N.R. 2007, A&A, 466, 763 %Theoretical energy levels (n=5 levels): Landi & Gu, 2006, ApJ, 640, 1171 %Theoretical energy levels (above ionization): Bautista, M.A., Mendoza, C., Kallman, T.R., Palmeri, P., 2004, A&A, 418, 1171 %A and gf values (levels up to n=4): Witthoeft, M.C., Del Zanna, G., & Badnell, N.R. 2007, A&A, 466, 763 %A and gf values (n=5 levels): Landi & Gu, 2006, ApJ, 640, 1171 %Radiative data innershell transitions to levels 1 to 15: Palmeri P., Mendoza C., Kallman T.R., Bautista M.A., 2003, A&A, 403, 1175 %Radiative data transitions to levels 360-374 from 368-375 and up: Bautista, M.A., Mendoza, C., Kallman, T.R., Palmeri, P., 2004, A&A, 418, 1171 %produced as part of the Arcetri/Cambridge/NRL 'CHIANTI' atomic data base collaboration % % Giulio Del Zanna and Enrico Landi - Oct 2008 % K. Dere Feb. 2018: removed autoionzation values for insertion into V9 removed radiative data transitions to levels 360-374 from 368-375 A values from level 360 through 375 to levels 1-15 derived from optimized energy level calculation with AUTOSTRUCTURE Theoretical energy levels: Autostructure calculation A Breit-Pauli distorted wave implementation for AUTOSTRUCTURE Badnell, N.R., 2011, Computer Physics Communications, 182, 1528 ADSref: http://adsabs.harvard.edu/abs/2011CoPhC.182.1528B Autostructure calculation optimized with 'SHFTIC' file using energy corrections from the following sources: Observed energy levels above IP: Kramida, A., Ralchenko, Yu., Reader, J., and NIST ASD Team (2012). NIST Atomic Spectra Database (ver. 5.0), [Online]. Available: http://physics.nist.gov/asd [2012, September 14]. National Institute of Standards and Technology, Gaithersburg, MD. observed energy level 360 Rudolph, J. K.; Bernitt, S.; Epp, S. W.; Steinbrugge, R.; Beilmann, C.; Brown, G. V.; Eberle, S.; Graf, A.; Harman, Z.; Hell, N.; Leutenegger, M.; Mueller, A.; Schlage, K.; Wille, H.-C.; Yavas, H.; Ullrich, J.; Crespo Lopez-Urrutia, J. R. X-Ray Resonant Photoexcitation: Linewidths and Energies of K-alpha Transitions in Highly Charged Fe Ions Physical Review Letters, vol. 111, Issue 10, id. 103002 DOI: 10.1103/PhysRevLett.111.103002 adsRef: http://adsabs.harvard.edu/abs/2013PhRvL.111j3002R produced as a part of the 'CHIANTI' atomic database for astrophysical spectroscopy K. Dere (GMU) - 2018 January 31 %File processed with wgfa_tidy by pryoung on 6-Mar-2019 %comment: Fixed text problems in comments. No change to data. Peter Young, 25-Jul-2019 %File processed with wgfa_tidy by pryoung on 31-May-2023
contains the effective electron collision strengths scaled according to the rules formulated by Burgess and Tully (1992).
% Giulio Del Zanna - Oct 2008 % %produced as part of the Arcetri/Cambridge/NRL 'CHIANTI' atomic data base collaboration %comment: effective collision strengths from FAC were provided in the temperature range 1.16e6 < T < 5.8e7 %comment: all excitations from the ground configuration have been retained form the original calculation. %effective collision strengths (above ionization): Bautista, M.A., Mendoza, C., Kallman, T.R., Palmeri, P., 2004, A&A, 418, 1171 %effective collision strengths (n=5 levels): Landi & Gu, 2006, ApJ, 640, 1171 %effective collision strengths (up to n=4 levels): Witthoeft, M.C., Del Zanna, G., & Badnell, N.R. 2007, A&A, 466, 763 %oscillator strengths (above ionization): Bautista, M.A., Mendoza, C., Kallman, T.R., Palmeri, P., 2004, A&A, 418, 1171 %oscillator strengths (n=5 levels): Landi & Gu, 2006, ApJ, 640, 1171 %oscillator strengths (up to n=4 levels): Witthoeft, M.C., Del Zanna, G., & Badnell, N.R. 2007, A&A, 466, 763 %filename: fe_20.splups
contains the spline fits to the scaled proton collision strengths.
%filename: fe_20.psplups %rates: Bhatia, A.K., Mason, H.E., 1980, A&A 83, 380 %energies: Bhatia, A.K., Mason, H.E., 1980, A&A 83, 380 %comments: The fits are good to < 3%. An acceptable fit could not be found to the 1 - 4 transition and so it was omitted. The rates for this transition are around 1e-12 and so it is not important. %produced as part of the Arcetri/Cambridge/NRL 'CHIANTI' atomic data base collaboration % % Peter Young 11-Sep-2002
%filename: fe_20.cilvl %Collisional ionization population rate: Gu, M.F., 2003, ApJ, 582, 1241 %produced as part of the Arcetri/Cambridge/NRL 'CHIANTI' atomic data base collaboration % % Enrico Landi - Feb 2004
Page created by Giulio Del Zanna on Wed Apr 16 17:43:00 2025