Here you find various information on the brightest lines, ordered in wavelength:
Wavelengths (Angstroms); weighted oscillator strengths (gf);
transition probabilities (A);
intensities (normalised) at
106 , 1010, 1015, 1020
cm-3;
together with:
Configuration; Term; Index of the level (1=ground); Energy (observed if available - otherwise theoretical);
of the lower (l) and upper levels (u)
Note that intensities have been calculated at log T[K]=6.40, where the ion fraction peaks in ionization equilibrium. Only lines brighter than 0.001 the strongest line (at all densities) are retained.
Lines flagged with a "*" before their wavelengths only have theoretical energy levels.
Please note that their wavelengths are not very accurate.
Wavelength |
gf |
Aul |
R |
R |
R |
R |
Cl |
Tl |
Cu | Tu |
Il | Iu |
El | Eu |
(A) | (s-1) |
(106) |
(1010) |
(1015) |
(1020) |
(cm-1) | (cm-1) |
|||||||
| * 23.8827 | 4.63e-02 | 1.35e+11 | 3.91e-03 | 3.91e-03 | 3.94e-03 | 1.74e-02 | 2s | 2S1/2 | 5p | 2P3/2 | 1 | 18 | 0 | 4187138 |
| * 23.8866 | 2.30e-02 | 1.34e+11 | 1.94e-03 | 1.94e-03 | 1.95e-03 | 8.62e-03 | 2s | 2S1/2 | 5p | 2P1/2 | 1 | 17 | 0 | 4186446 |
| 25.0998 | 8.83e-02 | 2.33e+11 | 2.30e-03 | 2.30e-03 | 2.34e-03 | 2.84e-02 | 2p | 2P1/2 | 5d | 2D3/2 | 2 | 19 | 208204 | 4192300 |
| 25.1707 | 1.61e-01 | 2.82e+11 | 4.15e-03 | 4.15e-03 | 4.21e-03 | 5.14e-02 | 2p | 2P3/2 | 5d | 2D5/2 | 3 | 20 | 219430 | 4192300 |
| 25.1707 | 1.78e-02 | 4.68e+10 | 4.61e-04 | 4.61e-04 | 4.68e-04 | 5.68e-03 | 2p | 2P3/2 | 5d | 2D3/2 | 3 | 19 | 219430 | 4192300 |
| * 25.2884 | 6.10e-03 | 3.18e+10 | 1.56e-03 | 1.56e-03 | 1.56e-03 | 1.95e-03 | 2p | 2P3/2 | 5s | 2S1/2 | 3 | 16 | 220120 | 4174507 |
| 26.5636 | 1.15e-01 | 2.72e+11 | 1.33e-02 | 1.33e-02 | 1.34e-02 | 4.52e-02 | 2s | 2S1/2 | 4p | 2P3/2 | 1 | 11 | 0 | 3764550 |
| 26.5744 | 5.77e-02 | 2.73e+11 | 6.60e-03 | 6.60e-03 | 6.65e-03 | 2.27e-02 | 2s | 2S1/2 | 4p | 2P1/2 | 1 | 10 | 0 | 3763020 |
| 28.0482 | 2.44e-01 | 5.17e+11 | 8.47e-03 | 8.47e-03 | 8.59e-03 | 7.96e-02 | 2p | 2P1/2 | 4d | 2D3/2 | 2 | 12 | 208204 | 3773500 |
| 28.1328 | 4.40e-01 | 6.18e+11 | 1.53e-02 | 1.53e-02 | 1.55e-02 | 1.42e-01 | 2p | 2P3/2 | 4d | 2D5/2 | 3 | 13 | 219430 | 3774000 |
| 28.1368 | 4.88e-02 | 1.03e+11 | 1.68e-03 | 1.68e-03 | 1.71e-03 | 1.58e-02 | 2p | 2P3/2 | 4d | 2D3/2 | 3 | 12 | 219430 | 3773500 |
| * 28.3209 | 7.88e-03 | 3.28e+10 | 3.11e-03 | 3.11e-03 | 3.11e-03 | 2.63e-03 | 2p | 2P1/2 | 4s | 2S1/2 | 2 | 9 | 209010 | 3739966 |
| * 28.4103 | 1.67e-02 | 6.88e+10 | 6.49e-03 | 6.49e-03 | 6.51e-03 | 5.50e-03 | 2p | 2P3/2 | 4s | 2S1/2 | 3 | 9 | 220120 | 3739966 |
| 35.0950 | 4.54e-01 | 6.15e+11 | 9.09e-02 | 9.09e-02 | 9.16e-02 | 2.71e-01 | 2s | 2S1/2 | 3p | 2P3/2 | 1 | 6 | 0 | 2849410 |
| 35.1360 | 2.29e-01 | 6.19e+11 | 4.54e-02 | 4.54e-02 | 4.58e-02 | 1.36e-01 | 2s | 2S1/2 | 3p | 2P1/2 | 1 | 5 | 0 | 2846080 |
| 37.5610 | 1.34e+00 | 1.59e+12 | 7.58e-02 | 7.58e-02 | 7.68e-02 | 5.58e-01 | 2p | 2P1/2 | 3d | 2D3/2 | 2 | 7 | 208204 | 2870540 |
| 37.7060 | 2.43e+00 | 1.90e+12 | 1.36e-01 | 1.36e-01 | 1.37e-01 | 1.00e+00 | 2p | 2P3/2 | 3d | 2D5/2 | 3 | 8 | 219430 | 2871530 |
| 37.7200 | 2.70e-01 | 3.16e+11 | 1.50e-02 | 1.50e-02 | 1.52e-02 | 1.11e-01 | 2p | 2P3/2 | 3d | 2D3/2 | 3 | 7 | 219430 | 2870540 |
| 38.7530 | 3.94e-02 | 8.75e+10 | 3.60e-02 | 3.60e-02 | 3.61e-02 | 2.00e-02 | 2p | 2P1/2 | 3s | 2S1/2 | 2 | 4 | 208204 | 2788650 |
| 38.9223 | 8.13e-02 | 1.79e+11 | 7.33e-02 | 7.33e-02 | 7.35e-02 | 4.07e-02 | 2p | 2P3/2 | 3s | 2S1/2 | 3 | 4 | 219430 | 2788650 |
| * 71.5280 | 1.30e-01 | 4.25e+10 | 4.11e-04 | 4.11e-04 | 4.14e-04 | 1.83e-03 | 3s | 2S1/2 | 5p | 2P3/2 | 4 | 18 | 2789089 | 4187138 |
| 74.2820 | 2.68e-01 | 8.07e+10 | 2.69e-04 | 2.69e-04 | 2.73e-04 | 3.32e-03 | 3p | 2P1/2 | 5d | 2D3/2 | 5 | 19 | 2846080 | 4192300 |
| 74.4660 | 4.86e-01 | 9.74e+10 | 4.85e-04 | 4.85e-04 | 4.92e-04 | 6.00e-03 | 3p | 2P3/2 | 5d | 2D5/2 | 6 | 20 | 2849410 | 4192300 |
| * 75.7070 | 6.26e-01 | 1.21e+11 | 6.04e-04 | 6.04e-04 | 6.08e-04 | 7.34e-03 | 3d | 2D3/2 | 5f | 2F5/2 | 7 | 21 | 2871229 | 4192108 |
| * 75.7600 | 8.93e-01 | 1.30e+11 | 8.65e-04 | 8.65e-04 | 8.70e-04 | 1.05e-02 | 3d | 2D5/2 | 5f | 2F7/2 | 8 | 22 | 2872257 | 4192219 |
| 102.4700 | 4.91e-01 | 7.80e+10 | 9.88e-04 | 9.88e-04 | 9.94e-04 | 3.36e-03 | 3s | 2S1/2 | 4p | 2P3/2 | 4 | 11 | 2788650 | 3764550 |
| 102.6300 | 2.49e-01 | 7.87e+10 | 4.93e-04 | 4.93e-04 | 4.97e-04 | 1.69e-03 | 3s | 2S1/2 | 4p | 2P1/2 | 4 | 10 | 2788650 | 3763020 |
| 107.8260 | 1.15e+00 | 1.65e+11 | 7.03e-04 | 7.03e-04 | 7.13e-04 | 6.61e-03 | 3p | 2P1/2 | 4d | 2D3/2 | 5 | 12 | 2846080 | 3773500 |
| 108.1560 | 2.09e+00 | 1.99e+11 | 1.28e-03 | 1.28e-03 | 1.30e-03 | 1.19e-02 | 3p | 2P3/2 | 4d | 2D5/2 | 6 | 13 | 2849410 | 3774000 |
| 108.2150 | 2.34e-01 | 3.32e+10 | 1.41e-04 | 1.41e-04 | 1.43e-04 | 1.33e-03 | 3p | 2P3/2 | 4d | 2D3/2 | 6 | 12 | 2849410 | 3773500 |
| 110.6560 | 4.05e+00 | 3.68e+11 | 1.75e-03 | 1.75e-03 | 1.76e-03 | 2.15e-02 | 3d | 2D3/2 | 4f | 2F5/2 | 7 | 14 | 2870540 | 3774240 |
| 110.7600 | 5.80e+00 | 3.94e+11 | 2.51e-03 | 2.51e-03 | 2.53e-03 | 3.08e-02 | 3d | 2D5/2 | 4f | 2F7/2 | 8 | 15 | 2871530 | 3774380 |
| 110.7780 | 2.90e-01 | 2.63e+10 | 1.25e-04 | 1.25e-04 | 1.26e-04 | 1.54e-03 | 3d | 2D5/2 | 4f | 2F5/2 | 8 | 14 | 2871530 | 3774240 |
| * 112.3500 | 1.87e-01 | 4.93e+10 | 1.18e-03 | 1.18e-03 | 1.18e-03 | 9.96e-04 | 3p | 2P3/2 | 4s | 2S1/2 | 6 | 9 | 2849892 | 3739966 |
| * 239.0770 | 3.54e+00 | 6.88e+10 | 1.09e-04 | 1.09e-04 | 1.09e-04 | 1.32e-03 | 4d | 2D3/2 | 5f | 2F5/2 | 12 | 21 | 3773832 | 4192108 |
| * 239.2600 | 5.07e+00 | 7.38e+10 | 1.56e-04 | 1.56e-04 | 1.56e-04 | 1.89e-03 | 4d | 2D5/2 | 5f | 2F7/2 | 13 | 22 | 3774264 | 4192219 |
| * 239.5050 | 8.07e+00 | 1.17e+11 | 3.52e-05 | 3.52e-05 | 3.57e-05 | 3.00e-03 | 4f | 2F5/2 | 5g | 2G7/2 | 14 | 23 | 3774695 | 4192223 |
| * 239.5910 | 1.05e+01 | 1.22e+11 | 4.63e-05 | 4.63e-05 | 4.70e-05 | 3.91e-03 | 4f | 2F7/2 | 5g | 2G9/2 | 15 | 24 | 3774912 | 4192290 |
| 455.7260 | 1.36e-01 | 1.10e+09 | 1.00e+00 | 1.00e+00 | 1.00e+00 | 5.54e-03 | 2s | 2S1/2 | 2p | 2P3/2 | 1 | 3 | 0 | 219430 |
| 480.2980 | 6.43e-02 | 9.37e+08 | 4.80e-01 | 4.80e-01 | 4.80e-01 | 2.26e-03 | 2s | 2S1/2 | 2p | 2P1/2 | 1 | 2 | 0 | 208204 |
Created by Giulio Del Zanna on Wed Apr 16 17:44:11 2025